Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nutrients ; 12(12)2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33352829

RESUMO

BACKGROUND: The mechanism of action of the ketogenic diet (KD), an effective treatment for pharmacotherapy refractory epilepsy, is not fully elucidated. The present study examined the effects of two metabolites accumulating under KD-beta-hydroxybutyrate (ßHB) and decanoic acid (C10) in hippocampal murine (HT22) neurons. METHODS: A mouse HT22 hippocampal neuronal cell line was used in the present study. Cellular lipids were analyzed in cell cultures incubated with high (standard) versus low glucose supplemented with ßHB or C10. Cellular cholesterol was analyzed using HPLC, while phospholipids and sphingomyelin (SM) were analyzed using HPTLC. RESULTS: HT22 cells showed higher cholesterol, but lower SM levels in the low glucose group without supplements as compared to the high glucose groups. While cellular cholesterol was reduced in both ßHB- and C10-incubated cells, phospholipids were significantly higher in C10-incubated neurons. Ratios of individual phospholipids to cholesterol were significantly higher in ßHB- and C10-incubated neurons as compared to controls. CONCLUSION: Changes in the ratios of individual phospholipids to cholesterol in HT22 neurons suggest a possible alteration in the composition of the plasma membrane and organelle membranes, which may provide insight into the working mechanism of KD metabolites ßHB and C10.


Assuntos
Ácido 3-Hidroxibutírico/metabolismo , Colesterol/metabolismo , Ácidos Decanoicos/metabolismo , Dieta Cetogênica , Hipocampo/metabolismo , Neurônios/metabolismo , Fosfolipídeos/metabolismo , Ácido 3-Hidroxibutírico/análise , Animais , Restrição Calórica , Linhagem Celular , Membrana Celular/química , Membrana Celular/metabolismo , Colesterol/análise , Ácidos Decanoicos/análise , Glucose/metabolismo , Hipocampo/química , Hipocampo/citologia , Camundongos , Neurônios/química , Fosfatidilserinas/análise , Fosfatidilserinas/metabolismo , Fosfolipídeos/análise , Esfingomielinas/análise , Esfingomielinas/metabolismo
2.
Nutrients ; 12(8)2020 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-32784510

RESUMO

The ketogenic diet (KD), a high-lipid and low-carbohydrate diet, has been used in the treatment of epilepsy, neurodegenerative disorders, inborn errors of metabolism and cancer; however, the exact mechanism/s of its therapeutic effect is not completely known. We hypothesized that sirtuins (SIRT)-a group of seven NAD-dependent enzymes and important regulators of energy metabolism may be altered under KD treatment. HT22 hippocampal murine neurons were incubated with two important KD metabolites-beta-hydroxybutyrate (BHB) (the predominant ketone body) and decanoic acid (C10), both accumulating under KD. Enzyme activity, protein, and gene expressions of SIRT 1-4, enzyme capacities of the mitochondrial respiratory chain complexes (MRC), citrate synthase (CS) and gene expression of monocarboxylate transporters were measured in control (untreated) and KD-treated cells. Incubation with both-BHB and C10 resulted in significant elevation of SIRT1 enzyme activity and an overall upregulation of the MRC. C10 incubation showed prominent increases in maximal activities of complexes I + III and complex IV of the MRC and ratios of their activities to that of CS, pointing towards a more efficient functioning of the mitochondria in C10-treated cells.


Assuntos
Ácido 3-Hidroxibutírico/farmacologia , Ácidos Decanoicos/farmacologia , Dieta Cetogênica , Metabolismo Energético/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Animais , Citrato (si)-Sintase/metabolismo , Expressão Gênica/efeitos dos fármacos , Camundongos , Mitocôndrias/enzimologia , Complexos Multienzimáticos/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Sirtuínas/efeitos dos fármacos
3.
J Pathog ; 2013: 936864, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23936657

RESUMO

There are substantial morbidity and mortality associated with vascular catheter use among crictically ill patients. The attributable mortality is 10% to 25% which is associated with bacteremia among those who are hospitalized. This study was undertaken to identify catheter related blood stream infections, to isolate pathogenic microorganisms present in intravascular catheter related local infections, exit site infections, and to determine the predisposing factors for the development of such infections and antibiotic sensitivity pattern of the isolated organisms in tertiary care hospital.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...